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Abstract. We investigate the recently proposed non-linear equation for the unintegrated gluon distribution
function which includes the subleading effects at small x. We obtained numerically the solution to this
equation in (x, k) space, and also the integrated gluon density. The subleading effects affect strongly the
normalization and the x and k dependence of the gluon distribution. We show that the saturation scale
Qs(x), which is obtained from this model, is consistent with the one used in the saturation model by Golec-
Biernat and Wüsthoff. We also estimate the non-linear effects by looking at the relative normalization of
the solutions to the linear and non-linear equations. It turns out that the differences are quite large even in
the nominally dilute regime, that is when Q2 � Q2

s . Finally, we calculate the dipole–nucleon cross section.

1 Introduction

The knowledge of the QCD dynamics at high energies is
essential in understanding the hadronic interactions stud-
ied at current (HERA, Tevatron) and future (LHC) accel-
erators. Parton distributions extracted from the HERA
ep collider will be used in the description of the hadronic
processes studied at LHC. It is very important to know
these parton distributions with very high accuracy and,
perhaps even more important, to be able to estimate pos-
sible uncertainties which may emerge when extrapolating
to the kinematic regime of LHC. A lot of effort is currently
devoted to extracting the parton distributions with very
high precision [1,2] from the available experimental data.

In principle two different frameworks can be used for
calculating the parton distributions. The standard one is
based on the DGLAP evolution and collinear factoriza-
tion. In the high energy limit it is also possible to use
the kT factorization [3] in which the QCD interaction is
described in terms of the quantity which depends on the
transverse momentum of the gluon i.e. the unintegrated
gluon distribution. An equation which governs the evolu-
tion of this distribution is the BFKL equation [4]. Its well
known solution leads to a very strong power growth of the
gluon density with energy: ∼ sλ where λ = 4 ln 2αsNc/π is
the BFKL intercept in the leading logarithmic approxima-
tion in powers of αs ln 1/x (LLX). Next to leading order
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corrections to BFKL [5] decrease the rate of growth but do
not change the power behavior of the gluon distribution.
Thus the growth of the resulting hadronic cross section
has to be eventually tamed in order to satisfy the unitar-
ity bound [6].

The perturbative parton saturation, first discussed in
a pioneering paper [7], is a phenomenon which slows down
the rapid growth of the partonic densities. It is believed
that it leads to the restoration of the unitarity of the scat-
tering matrix1. When the density of gluons becomes very
high, the gluon recombination has also to be taken into ac-
count. This leads to a modification of the evolution equa-
tions and their solution results in the saturation of the
gluon density. In the high energy limit, the parton satu-
ration is described by an infinite hierarchy of the coupled
evolution equations for the correlators of Wilson lines [9].
It is equivalent to the JIMWLK functional equation [10]
derived within the theory of the color glass condensate
[11]. In the absence of correlations, the first equation in
the Balitsky hierarchy decouples and is then equivalent
to the equation derived independently by Kovchegov [12]
within the dipole formalism [13].

It is desirable to have a formalism which embodies the
resummation of the subleading corrections in ln 1/x and
still contains the saturation effects. Various attempts in

1 Unitarity or the Froissart bound is valid with respect to
the whole QCD, whereas parton saturation is a perturbative
mechanism. As discussed in [8], apart from the saturation, the
confinement is also needed to satisfy the Froissart bound in
QCD.
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this direction already exist; see for example [14–23]. In
this contribution we analyze in better detail the non-linear
equation for the unintegrated gluon distribution function
proposed in [19,20]. Its linear term is formulated within
the unified BFKL/DGLAP framework [24] and the non-
linear term is taken from the Balitsky–Kovchegov equa-
tion. We find that the subleading corrections play an im-
portant role in the calculation of the unintegrated gluon
density since they reduce the value of the intercept and
lower the overall normalization of the solution. We also
study the differences of the solutions in the linear and
non-linear case. It is interesting that these differences be-
come amplified in the case of the integrated gluon density
xg(x, Q2). The behavior of the saturation scale is con-
trolled by the value close to the intercept of the solution
of the linear equation. In our case this value is equal to
the one suggested by HERA data, Qs ∼ exp(λY ) with
λ � 0.3. However, a more detailed analysis shows that
even though saturation scale seems to be rather low, the
actual numerical differences between the linear and non-
linear solutions are much bigger. In other words, the effect
of non-linearity on the overall normalization of the solu-
tion can be present already at the scales exceeding the
saturation scale.

The outline of this paper is as follows: in the next sec-
tion we introduce the Balitsky–Kovchegov equation and
the formalism which enables to write it in terms of the
unintegrated gluon distribution. In Sect. 3 we the recall
basic ingredients of the unified BFKL/DGLAP frame-
work and, following [19,20], we formulate the modified
Balitsky–Kovchegov equation.

In Sect. 4 we perform a numerical analysis of this equa-
tion. We present its solution, i.e. the unintegrated gluon
distribution as well as the integrated gluon density. Then,
we perform the analysis of the saturation scale Qs(x) and
try to quantify the importance of the saturation effects by
looking at the difference between the linear and non-linear
solution. In Sect. 5 we present the results for the dipole
cross section σ(x, r) and compare them to the Golec-
Biernat and Wüsthoff [25] parameterization. We summa-
rize our study in the last section.

2 The Balitsky–Kovchegov equation

In the dipole picture [26] one can view the deep inelastic
scattering process as a formation of the qq̄ dipole, followed
by the scattering of this dipole on the target. In the high
energy, s � Q2 � Λ2

QCD, regime these two processes are
factorized, and the total γ∗N cross section2 can be written
as

σγ∗N
T,L (x, Q2) =

∫
d2bd2rdz |ΨT,L(r, Q2, z)|2 N(r,b, x) ,

(1)
where −Q2 = q2 is the photon virtuality squared, and
x � Q2/s is the usual Bjorken variable. The quantity
ΨT,L(r, Q2, z) is the photon wave function which depends

2 N being a target, nucleon or nucleus.

on the virtuality Q2 and the size of the dipole r, as well
as the longitudinal fraction z of the photon momenta car-
ried by the quark. The subscripts T and L denote the
transverse and longitudinal polarization of the incoming
photon, respectively. N(r,b, x) is the amplitude for the
scattering of the dipole at impact parameter b on the tar-
get. It contains all the information about the interaction
of the dipole with the target.

The Balitsky–Kovchegov (BK) equation [9,12] is the
non-linear equation for the amplitude N(r,b, x)

∂N(r,b, x)
∂ ln 1/x

= αs

∫
d2r′r2

(r′ + r)2(r′)2

×
[

N

(
r′,b +

r′ + r
2

, x

)
+ N

(
r′ + r,b +

r′

2
, x

)
−N(r,b, x) (2)

− N

(
r′,b +

r′ + r
2

, x

)
N

(
r′ + r,b +

r′

2
, x

) ]
,

where αs ≡ αsNc
π . The linear term on the right-hand side

of (2) is equivalent to the BFKL equation in the coor-
dinate space, whereas the non-linear term is responsible
for the gluon recombination. It has been shown [40] to be
equivalent to the triple pomeron vertex [41]. This equation
has been independently derived in the dipole picture [12]
and from Wilson’s operator expansion [9]. In the latter
case, (2) is just the first member of the infinite hierarchy
which decouples in the absence of correlations.

In (2) there is a non-trivial interplay between the two
sizes: the dipole size r and the impact parameter b. The
exact solution, recently studied in [27] (and in [28] with a
modified kernel) has a very complicated b and r depen-
dence which comes as a consequence of the conformal sym-
metry of this equation. Solutions to this equation simpli-
fied ignoring the impact parameter dependence have been
extensively studied both analytically [29–31] and numer-
ically [14,16,32–34]. Here we are interested in the unin-
tegrated gluon density f(x, k2) averaged over the impact
parameter b. Following [19,20] we make the ansatz that
this dependence factorizes:

N(r,b, x) = n(r, x) S(b) , (3)

with the normalization conditions on a profile S(b)∫
d2bS(b) = 1 ,∫

d2bS2(b) =
1

πR2 , (4)

where R is the target size in the impact parameter.
We are fully aware that the assumption (3) is crude,

since it implies an approximation of an infinite and uni-
form target. To obtain the full b dependence one should
consider the exact equation (2).

One can now transform (2) in the momentum space,

Φ(l,b, x) =
∫

d2r
2πr2 eilr N(r,b, x) , (5)



K. Kutak, A.M. Staśto: The unintegrated gluon distribution from the modified BK equation 345

and taking
Φ(l,b, x) = φ(l, x)S(b) . (6)

We neglect the angular dependence and assume that the
functions n and φ depend only on the absolute values of
r ≡ |r| and l ≡ |l|. The relations (3), (5) and (6) enable
one to write (2) in the following form [12]:

∂ φ(l, x)
∂ ln 1/x

= αs

[
K ⊗ φ − 1

πR2 φ2(l, x)
]

, (7)

where we have integrated both sides of (2) over d2b. Note
that while N(r,b, x) and Φ(l,b, x) are dimensionless, the
functions n(r, x) and φ(l, x) have dimension

[
1

energy2

]
due

to the definitions (3) and (6). The operator K is the BFKL
kernel [4] in momentum space in the LLx approximation.
Let us now explicitly show how to find the relation be-
tween φ(l, x) and the unintegrated gluon distribution
f(x, k2) defined through

xg(x, Q2) ≡
∫ Q2

dk2

k2 f(x, k2) , (8)

with xg(x, Q2) being the integrated gluon density. The
unintegrated gluon distribution is related to the dipole
cross section

σ(r, x) =
8π2

Nc

∫
dk

k3 [1 − J0(kr)]αsf(x, k2) , (9)

which in turn can be obtained from the amplitude
N(r,b, x) by performing the integration over b:

σ(r, x) = 2
∫

d2bN(r,b, x) . (10)

Using (5), (9) and (10) one obtains

φ(l, x) =
1
2

∫
d2r
2πr2 eilr 8π2

Nc

∫
dk

k3 [1 − J0(kr)]αsf(x, k2) .

(11)
Integrating over angles yields

φ(l, x) (12)

=
2π2

Nc

∫ ∞

l2

dk2

k4

∫ ∞

0

dr

r
J0(lr)[1 − J0(kr)]αsf(x, k2) ,

and the integral over r gives

φ(l, x) =
π2

Nc

∫ ∞

l2

dk2

k4 ln
(

k2

l2

)
αsf(x, k2) . (13)

Now we need to invert the operator

Ô =
π2αs

Nc

∫ ∞

l2

dk2

k4 ln
(

k2

l2

)
g(k2) (14)

(where g(k2) is a test function), to get the expression for
f(x, k). Multiplying both sides of (12) by l2 and perform-
ing the Mellin transform with respect to l2 we obtain

φ(γ, x) ≡
∫

dl2l2φ(l, x)(l2)γ−1

=
∫

dl2l2
π2

Nc

∫ ∞

l2

dk2

k4 ln
(

k2

l2

)
αsf(x, k2)(l2)γ−1

=
αsπ2

Nc
f(γ)

1
(γ + 1)2

, (15)

and equivalently

f(γ) =
Nc

αsπ2 (γ + 1)2φ(γ, x) . (16)

The inverse Mellin transform gives

f(x, l2) =
Nc

αsπ2

∫
dγ

2πi
(l2)−γ(1 + γ)2φ(γ, x)

=
Nc

αsπ2

(
1 − l2

d
dl2

)2

l2φ(l, x) . (17)

This relation between functions f and φ has been first
derived in [32] and also in [19,20].

3 The non-linear equation
for the unintegrated density

The relation (17) allows us to transform (7) into an equa-
tion for the unintegrated gluon distribution,

∂f(x, k2)
∂ ln 1/x

=
αsNc

π
k2

∫
k2
0

dk′2

k′2

×
{

f
(
x, k′2) − f

(
x, k2

)
|k′2 − k2| +

f
(
x, k2

)
[4k′4 + k4]

1
2

}
(18)

− αs

(
1 − k2 d

dk2

)2
k2

R2

[∫ ∞

k2

dk′2

k′4 ln
(

k′2

k2

)
f(x, k′2)

]2

.

It is BFKL equation supplemented by the negative non-
linear term.

3.1 A partial resummation of the NLLx corrections

Equation (18) contains the BFKL kernel at leading loga-
rithmic (LLx) accuracy. This is a coarse approximation as
far as a description of the HERA data is concerned. It is
well known [5] that the NLLx corrections to the BFKL
equation are quite large. To make the equation more re-
alistic, it was proposed [19,20] to implement in the linear
term of (18) a unified BFKL-DGLAP framework devel-
oped in [24]. In this scheme [24], the BFKL kernel becomes
modified by the consistency constraint [35,36]

k′2 < k2/z , (19)

imposed onto the real-emission part of the kernel in (18)

∫
dk′2

k′2




f
(

x
z , k′2) Θ

(
k2

z − k′2
)

− f
(

x
z , k2

)
|k′2 − k2|
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+
f

(
x
z , k2

)
|4k′4 + k4| 1

2

}
. (20)

The consistency constraint (19) resums a large part of
the subleading corrections coming from a choice of scales
in the BFKL kernel [37,38]. Additionally, the non-singular
(in x) part of the leading order (LO) DGLAP splitting
function is included into the evolution∫ 1

x

dz

z
K ⊗ f → (21)

∫ 1

x

dz

z
K ⊗ f +

∫ k2
dk′2

k′2

∫ 1

x

dzP̄gg(z)f
(x

z
, k′2

)
,

where
P̄gg(z) = Pgg(z) − 2Nc

z
. (22)

Additionally, we assume that in our evolution equation αs
runs with scale k2 which is yet another source of important
NLLx corrections. The final improved non-linear equation
for the unintegrated gluon density is as follows:

f(x, k2) = f̃ (0)(x, k2)

+
αs(k2)Nc

π
k2

∫ 1

x

dz

z

∫
k2
0

dk′2

k′2

×



f
(

x
z , k′2) Θ

(
k2

z − k′2
)

− f
(

x
z , k2

)
|k′2 − k2|

+
f

(
x
z , k2

)
|4k′4 + k4| 1

2

}

+
αs(k2)Nc

π

∫ 1

x

dz P̄gg(z)
∫ k2

k2
0

dk′2

k′2 f
(x

z
, k′2

)

−
(

1 − k2 d
dk2

)2
k2

R2 (23)

×
∫ 1

x

dz

z

[∫ ∞

k2

dk′2

k′4 αs(k′2) ln
(

k′2

k2

)
f(z, k′2)

]2

.

In [24] the inhomogeneous term was defined in terms of
the integrated gluon distribution

f̃ (0)(x, k2) =
αS(k2)

2π

∫ 1

x

dzPgg(z)
x

z
g

(x

z
, k2

0

)
(24)

taken at scale k2
0 = 1 GeV2. This scale was also used as a

cutoff in the linear version of the evolution equation (23).
In the linear case this provided a very good description of
F2 data with a minimal number of physically motivated
parameters [24]. The initial integrated density at scale k2

0
was parameterized as

xg(x, k2
0) = N(1 − x)ρ , (25)

where N = 1.57 and ρ = 2.5.
Let us finally note that in this model only the linear

part of the BK equation has subleading corrections. We

do not know yet how to include these corrections in the
non-linear term. This would require the exact knowledge
of the triple pomeron vertex [41] at NLLx accuracy, which
is yet unknown beyond the LLx approximation.

4 Numerical analysis

4.1 The unintegrated and integrated gluon density

In this section we recall the method of solving (23) and we
present the numerical results for the unintegrated gluon
distribution function f(x, k2) and the integrated gluon
density xg(x, Q2). The method of solving (23), developed
in [20], relies on reducing it to an effective evolution equa-
tion in ln 1/x with the boundary condition at some mod-
erately small value of x (i.e. x = x0 ∼ 0.01).

To be specific, we make the following approximations.
(1) The consistency constraint Θ(k2/z−k′2) in the BFKL
kernel is replaced by the following effective (z indepen-
dent) term

Θ(k2/z−k′2) → Θ(k2−k′2)+
(

k2

k′2

)ωeff

Θ(k′2−k2) . (26)

This is motivated by the structure of the consistency con-
straint in the moment space, i.e.

ω

∫ 1

0

dz

z
zωΘ(k2/z − k′2)

= Θ(k2 − k′2) +
(

k2

k′2

)ω

Θ(k′2 − k2). (27)

(2) The splitting function is approximated in the following
way: ∫ 1

x

dz

z
[zPgg(z) − 2Nc]f

(x

z
, k′2

)
→

P̄gg(ω = 0)f(x, k′2) , (28)

where P̄gg(ω) is the moment function

P̄gg(ω) =
∫ 1

0

dz

z
zω[zPgg(z) − 2Nc] , (29)

and
P̄gg(ω = 0) = −11

12
. (30)

This approximation corresponds to retaining only the
leading term in the expansion of P̄gg(ω) around ω = 0
[39].

Using these approximations in (23) we obtain
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∂f(x, k2)
∂ ln(1/x)

=
αs(k2)Nc

π

∫
k2
0

dk′2

k′2




f
(
x, k′2) [

Θ
(
k2 − k′2) +

(
k2

k′2

)ωeff
Θ

(
k2 − k′2)] − f

(
x, k2)

|k′2 − k2|




+
αs(k2)Nc

π
P̄gg(0)

∫ k2

k2
0

dk′2

k′2 f(x, k′2) −
(

1 − k2 d
dk2

)2
k2

R2

[∫ ∞

k2

dk′2

k′4 αs(k′2) ln
(

k′2

k2

)
f(x, k′2)

]2

. (31)

First, (31) was solved with the non-linear term ne-
glected starting from the initial conditions at x = 10−2

given by (24). The parameter ωeff was adjusted in such a
way that the solution of the linear part of (31) matched
the solution of the original equation in the BFKL/DGLAP
framework [24]. This procedure gives ωeff = 0.2 and the
solution of the linear part of (31) reproduces the orig-
inal results of [24] within 3% accuracy in the region
10−2 > x > 10−8 and 2 GeV2 < k2 < 106 GeV2. This
matching procedure has also the advantage that the quark
contribution present in the original BFKL/DGLAP frame-
work is effectively included by fitting the value of ωeff .
The full non-linear equation (31) was then solved using
the same initial conditions and setting R = 4 GeV−1.

In Fig. 1 we plot the unintegrated gluon distribution
function as a function of x for different values of k2. This
figure compares the results of two calculations, based on
the linear and non-linear equations. The differences are
not large, however there is some suppression due to the
non-linearity at the smallest values, x ≤ 10−5.

The subleading corrections strongly decrease the value
of the intercept with respect to the LLx value and the non-
linear term becomes important only at very low values of
x.

As is evident from Fig. 2 the subleading corrections
cause a large suppression in the normalization, also at
moderate values of x. This is due to the fact that the
part of the Pgg splitting function non-singular in x was
included into the evolution. This term is negative and is
important at large and moderate values of x.

The same conclusions can be reached by investigating
the plots in Fig. 3 where the unintegrated density is shown
as a function of the transverse momentum k2 for fixed val-
ues of x. The non-linear effects seem to have a moderate
impact in that region. On the other hand the subleading
corrections are substantial. For example, at x = 10−5 and
k2 = 10 GeV2 the reduction in magnitude of the uninte-
grated gluon density is about 25%.

In Fig. 4 we show the integrated gluon density given
by (8). The change from the power behavior at small x is
clearly visible in the non-linear case. Also the differences
between the distributions in the linear and non-linear case
seem to be more pronounced for the quantity xg(x, Q2).
This is due to the fact that in order to obtain the gluon
density xg(x, Q2) one needs to integrate over scales up to
Q2 including small values of k2, where the suppression due
to the non-linear term is bigger.

4.2 The saturation scale Qs(x)

In order to quantify the strength of the non-linear term,
one introduces the saturation scale Qs(x). It divides the
space in (x, k2) into regions of the dilute and dense par-
tonic system. In the case when k2 < Q2

s (x) the solu-
tion of the non-linear BK equation exhibits the geomet-
ric scaling. This means that it is dependent only on one
variable N(r, x) = N(rQs(x)), or in momentum space
φ(k, x) = φ(k/Qs(x)). Recently, an analysis of the sat-
uration scale in the case of the model with resummed
NLL BFKL has been performed [18]. There, the satura-
tion scale was calculated from the formula

−dω(γc)
dγc

=
ωs(γc)
1 − γc

, (32)

which has been first derived in [7] by the boundary con-
dition of the wave front. Formula (32) has been later red-
erived in [42,30]. The effective pomeron intercept ωs is a
solution to the equation

ωs(γ) = ᾱs χ(γ, ωs) , (33)

where χ(γ, ω) is the kernel eigenvalue of the resummed
model. In our case the eigenvalue has the following form:

χ(γ, ω) = 2Ψ(1) − Ψ(γ) − Ψ(1 − γ + ω) +
ω

γ
P̄gg(ω) . (34)

The solution for the saturation scale obtained from solv-
ing (32,33) using eigenvalue (34) is shown in Fig. 5 and
gives λ = ωs(γc)

1−γc
= 0.30, 0.45, 0.54 for three values of

αs = 0.1, 0.2, 0.3, respectively. These results are similar
to those obtained in [18]. We compare our results with
the saturation scale from the Golec-Biernat and Wüsthoff
model. Normalization of the saturation scale is set to
match GBW saturation scale at x0 = 0.41 × 10−4.

The saturation scale Qs(x) can be also obtained di-
rectly from the numerical solution to the non-linear equa-
tion by locating, for example, the maximum of the mo-
mentum distribution of the unintegrated gluon density in
the spirit of method presented in [14]. For the purpose
of phenomenology we attempt here to estimate the effect
of the non-linearity in a different, probably more quanti-
tative way. We study the relative difference between the
solutions to the linear and non-linear equations

|f lin(x, Q̃s(x, β)2) − fnonlin(x, Q̃s(x, β)2)|
f lin(x, Q̃s(x, β)2)

= β, (35)

where β is a constant of order 0.1–0.5. Since this definition
of the saturation scale is different from the one used in the
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Fig. 1. The unintegrated gluon distribution f(x, k2) obtained from (31) as a function of x for different values k2 = 102 GeV2

and k2 = 103 GeV2 (left) and for k2 = 5 GeV2 and k2 = 50 GeV2 (right). The solid lines correspond to the solution of the
non-linear equation (31) whereas the dashed lines correspond to the linear BFKL/DGLAP term in (31)
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Fig. 2. The same as Fig. 1 but now the modified BK equation (31) (solid lines) is compared with the original BK equation (18)
without subleading corrections (dashed lines)

10 1e+02 1e+03

k
2
 (GeV

2
)

10

15

20

25

30

f(
x,

k2 )

x=10
−5

x=10
−4

1e+01 1e+02 1e+03

k
2
(GeV

2
)

10

15

20

25

30

f(
x,

k2 )

x=10
−4

x=10
−5

Fig. 3. The unintegrated gluon distribution f(x, k2) as a function of k2 for two values of x = 10−5 and 10−4. Left: solid lines
correspond to the solution of the non-linear equation (31) whereas dashed lines correspond to linear BFKL/DGLAP term in
(31). Right: solid lines correspond to the solution of the non-linear equation (31) whereas dashed lines correspond to the solution
of the original BK equation without the NLLx modifications in the linear part (18)
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literature and is likely to posses different x dependence, we
denote it as Q̃s. In Fig. 6 (left) we show a set Q̃s which are
solutions to (35) for different choices of β together with
the saturation scale calculated from the original satura-
tion model by Golec-Biernat and Wüsthoff [25]. Solid lines
given by (35) show where the non-linear solution for the
unintegrated gluon starts to deviate from the linear one
by 10%, 20%, . . . , 50%. It is interesting that the contours
Q̃s(x) defined in (35) have much stronger x dependence
than saturation scale Qs(x) defined by (32) and the one
from the GBW model. In particular Q̃s(x, β) > Qs(x) for
given x (at very small values of x). This might be a hint
that saturation corrections can become important much
earlier (i.e. for lower energies) than it would be expected
from the usual definition of the saturation scale Qs(x). In
Fig. 6 (right) we also show contours in the case of the in-
tegrated gluon distribution function; that is, the solution
to (35) with f(x, k2) replaced by xg(x, Q2). As already
seen from the previous plot, see Fig. 4, the differences in
the integrated gluon are more pronounced. For example in

the case of Q2 = 25 GeV2 and x � 10−5–10−6 we expect
about 15% to 30% difference in the normalization. Again,
by looking solely at the position of the critical line, one
would expect the non-linear effects to be completely neg-
ligible in this region since at x = 10−6 the correspond-
ing Q2

s (x) � 2.8 GeV2 (taking Q2
s (x) = Q2

s,0(x/x0)−λ

with normalization Q2
s,0 = 1 GeV2 at x0 � 4 × 10−5 and

λ � 0.28, [25]). This rough analysis shows that one can-
not think of the saturation scale as a definite and sharp
border between a very dilute and a dense system. The
transition between these two regimes appears to be rather
smooth and the non-linear term of the equation seems to
have quite a large impact on the normalization even in the
“linear” regime defined as Q2 � Q2

s (x).
In practice, the estimate of the saturation effects is

even more complicated since the unintegrated gluon den-
sity has to be convoluted with some impact factor, and the
integration over the range of scales must be performed.

4.3 Dipole cross section σ(r, x)

It is interesting to see what is the behavior of the dipole
cross section σ(r, x) as obtained from the unintegrated
gluon density via (9). In this calculation we assume that
αs is running with the scale k2.

Calculation of the dipole cross section requires the
knowledge of the unintegrated gluon density for all scales
0 < k2 < ∞. Since in our formulation the unintegrated
gluon density is known for k2 > k2

0 we need to parameter-
ize f(x, k2) for the lowest values of k2, k2 < k2

0. We use
the matching condition

xg(x, k2
0) =

∫ k0
2

0

dk2

k2 f(x, k2) , (36)

and following [43] we assume that f(x, k2) ∼ k4 for low
k2. This gives (compare (25))

f(x, k2) = 4N(1 − x)ρk4 . (37)
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0.5 1 1.5 2

r(GeV
−1

)

0

10

20

30

σ(
m

b) x=10
−5

x=10
−4

x=10
−3

Fig. 7. The dipole cross section obtained from the modified
BK (solid line) compared to the GBW dipole model (dashed
line)

In Fig. 7 we present the dipole cross section as a func-
tion of the dipole size r for the three values of x =
10−3, 10−4 and 10−5. For comparison we also present the
dipole cross section obtained from GBW parameteriza-
tion. To be self-consistent, we cut the plot at r = 2 GeV−1

because we assumed in the derivation of formula (7) that
the dipoles are small in comparison to the target size (we
assume proton radius to be 4 GeV−1). This cut allows us
to obtain a model independent result since we observe
that different parameterizations of f(x, k2) for k2 < k2

0
give essentially the same contribution for r < 2 GeV−1.

We observe that our extraction of the dipole cross sec-
tion gives a similar result to the GBW parameterization.
The small difference in the normalization is probably due
to the different values of xg which probe the gluon distri-
bution (or alternatively the dipole cross section). In the
GBW model the dipole cross section is taken at the value

xg = x which is the standard Bjorken x = Q2/2p·q. On the
other hand, in the formalism presented in [24] one takes
into account the exact kinematics (energy conservation)
in the photon impact factor. It is a part of the subleading
effect in the impact factor and it increases the value of
xg ∼ 5x. Therefore, in our formalism the normalization
of the unintegrated gluon is increased so that the convo-
lution with the impact factor and the resulting structure
function remains the same.

5 Conclusions

In this paper we studied numerically the solutions to the
modified BK equation in the approximation of the infinite
and uniform target. The modifications include the sub-
leading corrections in ln 1/x which are given by the kine-
matical constraint, DGLAP Pgg splitting function and the
running of the strong coupling. Since these corrections re-
duce significantly the value of the BFKL intercept, they
also have a large impact on the behavior of the saturation
scale and the normalization of the solution. For example,
we find that at x = 10−4 and k2 = 100 GeV2 the normal-
ization of the unintegrated gluon distribution is reduced
by about 30%–40% as compared with the solution to the
unmodified BK equation.

We have studied the onset of the non-linear corrections
by observing the difference in the normalization of the lin-
ear and non-linear solutions. We observe that even though
the solutions are in the nominally dilute regime, the nor-
malization of the solution to the BK equation can be al-
ready strongly affected by the presence of the non-linear
term. This can have potential impact on the extrapolation
of the parton distributions to lower values of x. We note
however that, as long as the non-linearities do not affect
substantially the k and x dependence of the solution, the
linear equation can probably be used with suitably chosen
boundary conditions.
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We have also computed the dipole cross section from
this model and compared it with the GBW. We find that
both models give similar results, with some small differ-
ences which can be atrributed to the slightly different
treatment of the photon impact factor.

Finally, we stress that although the subleading correc-
tions are included in this formalism by using the available
knowledge on the NLLx BFKL equation and the resum-
mation procedures, they are taken into account only in
the linear part of the BK equation. A consistent and com-
plete treatment would require their inclusion in the triple
pomeron vertex part, which is so far known to LLx accu-
racy only.
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